Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 808191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463025

RESUMO

Hepatitis C virus-induced liver damage, chronic liver damage due to alcohol, and non-alcoholic liver disease-induced cellular alterations promote fibrosis, cirrhosis, and/or hepatocellular carcinoma. The recommended therapeutic option for advanced liver damage is liver transplantation. Extracellular matrix scaffolds have been evaluated as an alternative for tissue restoration. Studies on the biocompatibility and rejection of synthetic and natural scaffolds as an alternative to organ transplantation have been evaluated. Our group has recently described the xenoimplant of collagen matrix scaffold (CMS) in a rat model. However, no complete macroscopic and histological description of the liver parenchyma at the initial (day 3), intermediate (day 14), and advanced (day 21) stages has been obtained. In this study, we described and compared liver tissue from the CMS zone (CZ, CMS, and liver parenchyma), liver tissue from the normal zone (liver parenchyma close to the CMS), and basal tissue (resected tissue from the CMS implantation site). Our data strongly suggest that the collagen matrix xenoimplant is a good niche for hepatocytes, with no rejection, and does not affect liver function tests. The liver can regenerate after damage, but this capacity is inhibited in a chronic injury. At present, the use of CMS after liver damage has not been reported. This biomaterial could be a novel alternative in the field of regenerative medicine for liver diseases.

2.
J Vis Exp ; (172)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279487

RESUMO

Liver diseases are the leading cause of death worldwide. Excessive alcohol consumption, a high-fat diet, and hepatitis C virus infection promote fibrosis, cirrhosis, and/or hepatocellular carcinoma. Liver transplantation is the clinically recommended procedure to improve and extend the life span of patients in advanced disease stages. However, only 10% of transplants are successful, with organ availability, presurgical and postsurgical procedures, and elevated costs directly correlated with that result. Extracellular matrix (ECM) scaffolds have emerged as an alternative for tissue restoration. Biocompatibility and graft acceptance are the main beneficial characteristics of those biomaterials. Although the capacity to restore the size and correct function of the liver has been evaluated in liver hepatectomy models, the use of scaffolds or some kind of support to replace the volume of the extirpated liver mass has not been assessed. Partial hepatectomy was performed in a rat liver with the xenoimplantation of a collagen matrix scaffold (CMS) from a bovine condyle. Left liver lobe tissue was removed (approximately 40%), and an equal proportion of CMS was surgically implanted. Liver function tests were evaluated before and after the surgical procedure. After days 3, 14, and 21, the animals were euthanized, and macroscopic and histologic evaluations were performed. On days 3 and 14, adipose tissue was observed surrounding the CMS, with no clinical evidence of rejection or infection, as was vessel neoformation and CMS reabsorption at day 21. There was histologic evidence of an insignificant inflammation process and migration of adjacent cells to the CMS, observed with the hematoxylin and eosin (H&E) and Masson's trichrome staining. The CMS was shown to perform well in liver tissue and could be a useful alternative for studying tissue regeneration and repair in chronic liver diseases.


Assuntos
Regeneração Hepática , Alicerces Teciduais , Animais , Bovinos , Colágeno , Matriz Extracelular , Hepatectomia , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...